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Abstract
Although 24 Alzheimer’s disease (AD) risk loci have been reliably identified, a large portion

of the predicted heritability for AD remains unexplained. It is expected that additional loci of

small effect will be identified with an increased sample size. However, the cost of a signifi-

cant increase in Case-Control sample size is prohibitive. The current study tests whether

exploring the genetic basis of endophenotypes, in this case based on putative blood bio-

markers for AD, can accelerate the identification of susceptibility loci using modest sample

sizes. Each endophenotype was used as the outcome variable in an independent GWAS.

Endophenotypes were based on circulating concentrations of proteins that contributed sig-

nificantly to a published blood-based predictive algorithm for AD. Endophenotypes included

Monocyte Chemoattractant Protein 1 (MCP1), Vascular Cell Adhesion Molecule 1

(VCAM1), Pancreatic Polypeptide (PP), Beta2 Microglobulin (B2M), Factor VII (F7), Adipo-

nectin (ADN) and Tenascin C (TN-C). Across the seven endophenotypes, 47 SNPs were

associated with outcome with a p-value�1x10-7. Each signal was further characterized

with respect to known genetic loci associated with AD. Signals for several endophenotypes

were observed in the vicinity of CR1, MS4A6A/MS4A4E, PICALM, CLU, and PTK2B. The

strongest signal was observed in association with Factor VII levels and was located within

the F7 gene. Additional signals were observed in MAP3K13, ZNF320, ATP9B and TREM1.
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Conditional regression analyses suggested that the SNPs contributed to variation in protein

concentration independent of AD status. The identification of two putatively novel AD loci (in

the Factor VII and ATP9B genes), which have not been located in previous studies despite

massive sample sizes, highlights the benefits of an endophenotypic approach for resolving

the genetic basis for complex diseases. The coincidence of several of the endophenotypic

signals with known AD loci may point to novel genetic interactions and should be further

investigated.

Introduction
All of the common loci that have been linked to late onset Alzheimer’s disease (AD) other than
APOE have small effect sizes and a large portion of the predicted heritability for AD remains
unidentified[1]. A number of explanations and potential sources have been postulated for this
missing heritability, which is observed for many complex human diseases. Examples include
rare variants with large effect sizes, epistatic interactions between multiple common alleles,
inflated heritability statistics and genetic heterogeneity, among others[2].

Another approach to the identification of genes involved in Alzheimer’s disease pathogene-
sis is to ascertain quantitative endophenotypes that are associated with AD risk and then look
for genetic variants that are associated with those endophenotypes. Endophenotypes are inter-
mediate traits that are closer to the underlying molecular mechanism than the complex pheno-
type, and are in principle more likely to be affected by the genetic variation. Discovering
genetic and environmental factors contributing to complex human diseases, as well as the
development of effective therapies often requires understanding endophenotypes of the dis-
ease. For example, discovery of genetic factors contributing to coronary artery disease and the
eventual development of effective therapies based on HMG-CoA reductase inhibition was
made possible by understanding the endophenotype of hypercholesterolemia[3]. Potential
endophenotypes of Alzheimer’s disease include quantitative neuroimaging, such as measures
of hippocampal atrophy[4–6], or levels of amyloid or tau proteins in the brain or cerebrospinal
fluid (CSF)[7–10]. An additional and still evolving source of AD biomarkers is the pool of cir-
culating proteins in the blood[11–14].

Our objective in this project was to identify the genetic variants that impact concentrations
of proteins associated with diagnostic status for Alzheimer’s disease. It was expected that geno-
types of some variants would be correlated with protein levels and AD status while others
would be correlated with protein levels alone. We used conditional regression analysis to assess
the relationship between AD risk, biomarkers, SNPs and non-genetic risk factors.

Materials and Methods

Study Cohorts—TARCC and ADNI
TARCC methodologies have been described in detail elsewhere[15]. Criteria for categorizing
subjects as probable AD, mild cognitive impairment (MCI) or normal control (NC) are based
on neurocognitive evaluations, family and/or caregiver interviews and medical history. NC
must have normal psychometric test scores and a clinical dementia rating (CDR) score of 0.
MCI subjects are classified based on the Mayo Clinic Alzheimer's Disease Research Criteria
[16]. Patients are characterized as probable AD according to the National Institute of Neuro-
logical and Communicative Disorders and Stroke (NINCDS) and the Alzheimer’s Disease and
Related Disorders Association (ADRDA) criteria[17]. Each participating site that enrolled
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participants operates with Institutional Review Board (IRB) approval and each of the following
IRBs approved this study (University of North Texas Health Science Center IRB, University of
Texas Southwestern Medical Center IRB, Baylor College of Medicine IRB, University of Texas
Health Science Center at San Antonio IRB, Texas Tech University Health Sciences Center
IRB). Written informed consent was obtained for every participant at the site of enrollment.
Data that were used in this study as a validation set were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) (adni.loni.usc.edu). Details of ADNI clinical evaluation and
sample characterization are described elsewhere[18, 19]. The primary goal of ADNI has been
to test whether serial magnetic resonance imaging (MRI), positron emission tomography
(PET), other biological markers, and clinical and neuropsychological assessment can be com-
bined to measure the progression of mild cognitive impairment (MCI) and early Alzheimer’s
disease (AD). The Principal Investigator of this initiative is Michael W. Weiner, MD, VAMed-
ical Center and University of California–San Francisco. The initial goal of ADNI was to recruit
800 subjects but ADNI has been followed by ADNI-GO and ADNI-2. A complete listing of
ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_
apply/ADNI_Acknowledgment_List.pdf. To date these three protocols have recruited over
1500 adults, ages 55 to 90. The follow up duration of each group is specified in the protocols
for ADNI-1, ADNI-2 and ADNI-GO. For up-to-date information, see www.adni-info.org.
Demographic data for the TARCC and ADNI cohorts are provided in Table 1.

Measurement of Serum/Plasma Proteins
During clinical visits, a blood draw was collected from each subject; both plasma and serum
were collected from TARCC subjects, who were non-fasting, whereas only plasma was col-
lected from ADNI subjects, who were fasting. Plasma and serum were isolated from whole
blood samples as described previously for each cohort[15], [18, 19]. Frozen specimens (serum
for TARCC subjects and plasma for ADNI subjects), either from baseline or from the year-one

Table 1. Demographic characteristics of the Texas Alzheimer’s Research and Care Consortium (TARCC) and the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) cohorts.

NC MCI AD

Variable TARCC N = 134 ADNI N = 41 TARCC N = 0 ADNI N = 298 TARCC N = 166 ADNI N = 84

Age, Mean (SD) 70 (8.9) 76 (5.8) - 75 (7.6) 76 (8.5) 76 (8.0)

Years of Education, Mean (SD) 15 (2.6) 16 (2.7) - 16 (2.9) 14 (3.3) 15 (3.1)

Race, N (%) -

White 131 (97.8) 41 (100) - 297 (99.7) 165 (99.4) 84 (100)

Other* 3 (2.2) 0 (0.0) - 1 (0.3) 1 (0.6) 0 (0.0)

Hispanic Ethnicity, N (%) -

Hispanic 4 (3.0) 0 (0.0) - 10 (3.4) 4 (2.4) 0 (0)

Non-Hispanic 130 (97.0) 41 (100) - 284 (95.3) 162 (97.6) 83 (98.8)

Unknown 0 (0.0) 0 (0.0) - 4 (1.3) 0 (0.0) 1 (1.2)

Gender, N (%) -

Female 99 (73.9) 21 (51.2) - 114 (38.3) 107 (64.5) 31 (36.9)

Male 35 (26.1) 20 (48.8) - 184 (61.7 59 (35.5) 53 (63.1)

APOE4 Status, N (%) -

εX/ εX 100 (74.6) 39 (95.1) - 146 (49.0) 66 (39.8) 30 (35.7)

εX/ε4 and ε4/ε4 34 (25.4) 2 (4.9) - 152 (51.0) 100 (60.2) 54 (64.3)

* Other: ADNI = Asian; TARCC = Mixed race

doi:10.1371/journal.pone.0142360.t001
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follow-up exam, were shipped on dry ice to Myriad-Rules Based Medicine (www.
rulesbasedmedicine.com, Austin, TX) where protein concentrations were assessed using a mul-
tiplex immunoassay panel for human analytes (human Multi-Analyte Profile, humanMAP).
Samples were maintained in the frozen state until the time of the assay. Specifics regarding the
sensitivity, specificity, range, inter-run variation coefficient, and spike recovery of the assays
are available from Myriad-Rules Based Medicine.

The initial list of 11 proteins from the screening algorithm included: NRP, Beta 2 Microglo-
bulin, C-Reactive Protein, Factor VII, Fatty Acid Binding Protein, I.309, Interleukin-18, Mono-
cyte Chemotactic Protein 1, Pancreatic Polypeptide, Tenascin C, and Vascular Cell Adhesion
Molecule 1. Proteins were removed from consideration if they failed to contribute to the O’Bry-
ant et al. screening algorithm[12] in the same direction in both the TARCC vs. ADNI cohorts.
Based on these criteria, C-Reactive Protein, Fatty Acid Binding Protein, I.309 and Interleukin-
18 were excluded. The final list of seven proteins included Adiponectin, Beta 2 Microglobulin,
Factor VII, Monocyte Chemotactic Protein 1, Pancreatic Polypeptide, Tenascin C, and Vascu-
lar Cell Adhesion Molecule 1.

Genotyping
The TARCC cohort was genotyped using the Genome-Wide Human SNP Array 6.0 (Affyme-
trix, Santa Clara, CA), which includes 906,600 SNP markers. The ADNI cohort was genotyped
using the Illumina 610-Quad BeadChip (Illumina, San Diego, CA), which includes 550,000
SNP markers. Both panels obtain genome-wide coverage. The BirdSeed v2 algorithm[20] was
manually optimized and used for genotype calling.

Quality Control Measures
Locally developed Java programs (collectively termed MACHTools) were used to perform criti-
cal data quality checking/filtering, imputation analysis, and data restructuring to affect overall
computational performance. Participants were excluded from analysis if blood protein concen-
tration data were not available, if the recorded sex did not agree with chromosome markers or
if>5% of the markers did not successfully run. Markers were excluded from analysis if 5% of
samples were missing, if they were monomorphic (threshold set at 0.01) or if they were out of
Hardy-Weinberg Equilibrium (threshold set at 0.000001). In addition, genotype calls for
important markers were manually checked independent of phenotype and recalled as necessary
in order to account for obvious atypical hybridization intensities (such as discussed in (Didion
et al.)[21][21] (21).This checking was conducted on the entire sample, without knowledge of
diagnostic status or phenotype. Results were limited to loci with a minor allele frequency
greater than 5%.

Data Analysis
An analysis pipeline was developed to fully analyze these GWA data in association with the
quantitative RBM traits (Fig 1). Principle component analysis was performed using the Eigen-
strat tool[22] for population substructure covariate determination. Relevant eigenvectors were
used as covariates in the analyses, along with sex and education. The following plasma/serum
protein concentrations were used as quantitative phenotypes: Adiponectin, Beta 2 Microglobu-
lin, Factor VII, Monocyte Chemotactic Protein 1, Pancreatic Polypeptide, Tenascin C, and Vas-
cular Cell Adhesion Molecule 1 (Table 2). Additionally, age-of-onset and case/control status
were analyzed. Preliminary linear mixed model regressions were generated for all quantitative
phenotypes using PLINK[23]. Phasing, imputation (using data from the HapMap II, HapMap
III and 1000 Genomes databases), and subsequent regressions with the newly imputed GTs
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were performed using custom applications of the programMaCH[24]. Genotype calls at all sig-
nificant SNPs were manually checked for proper clustering as described above. After re-cluster-
ing, the association regressions and imputation analyses were repeated. This iterative loop was
executed three times. Lambda calculations and QQ plots were used to confirm the absence of
underlying biases and/or confounders. Manhattan plots were generated for each GWA study
in both TARCC and ADNI. Both Manhattan and QQ plots were generated using ggplot2 in
R[25]. Final association results for typed and imputed SNPs in both TARCC and ADNI data
sets were analyzed in conjunction using Metal[26]. For each quantitative trait, signals with
p-values�1x10-7 in the meta-analysis were further investigated by plotting the local 1Mbp
window (+/-500Kbp) for all three association studies (TARCC, ADNI, and Metal) using Locus-
Zoom[27]. Only signals that were significant in the meta analysis at p�1x10-7 and showed evi-
dence of a significant peak in both the TARCC and ADNI cohorts were reported.

Conditional Regression Methods
Relationships between diagnostic status, each protein biomarker and its associated genotypes
were assessed in a series of conditional regressions. In this set of experiments, we included only
combinations of proteins and genotypes that were identified as significant in the meta-analyses
of both TARCC and ADNI cohorts (Table 3). The conditional regression analyses were con-
ducted using a pair of analytical design models. The first analytical design was to use AD status

Fig 1. Data analysis workflow schematic.

doi:10.1371/journal.pone.0142360.g001
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(AD or NC) as the dependent variable, with either protein concentration or genotype as the
independent variable. The resulting residuals from this regression were then used as the depen-
dent variable in a second regression with either genotype or protein concentration as the inde-
pendent variable. The second design was to use each protein concentration as the dependent
variable with either AD status or genotype as the independent variable. The resulting residuals
from this regression were then used as the dependent variable in a second regression with
either genotype or AD status as the independent variable.

All conditional regressions were performed in R. The glm package was used for regressions
when the dependent variable was continuous (protein concentration) and the lm package was
used when the dependent variables were non-parametric (AD status or residuals). All initial
regression equations were adjusted for sex, years of education and population substructure
(10 most relevant Eigenvectors from the principal components analysis). For these analyses,
an adjusted p-value of�0.01 in either cohort, or�0.05 in both cohorts was considered
significant.

Results
Quantile-quantile (QQ) plots showed no evidence of population substructure or inflation due
to mistyped SNPs for any trait in either cohort (Figs 2–5). Meta-analyses showed many inter-
esting signals (supplemental data), including a strong replication of the association between
AD status and variants in the APOE/TOMM40 region. Conversely, no genome-wide signifi-
cant (GWS; p<1x10-7) associations were observed for age of onset of disease symptoms. In
this paper, we focus on four associations between genetic loci and three of the seven

Table 2. Serum protein measures.

NC MCI AD

Protein (Normalized
Median (IQR))

TARCC N = 134 ADNI N = 41 TARCC
N = 0

ADNI N = 298 TARCC N = 166 ADNI N = 84

Adiponectin -0.2258 (-0.7516–
0.5680)

-0.1664 (-1.3855–
0.8740)

- 0.0759 (-0.6439–
0.6987)

0.0851 (-0.5362–
0.8213)

0.1991 (-0.5519–
0.7738)

Beta 2 Microglobulin -0.2030 (-0.7440–
0.4490)

0.0130 (-0.6281–
0.4855)

- 0.0130 (-0.8976–
0.4855)

0.2170 (-0.5470–
0.9100)

0.3422 (-0.3900–
1.1211)

C-Reactive Protein 0.2795 (-0.5280–
1.0170)

0.4301 (-0.2202–
0.9687)

- -0.0902 (-0.6694–
0.5331)

-0.1870 (-0.8847–
0.5227)

-0.0902 (-0.9172–
0.8112)

Factor VII 0.0714 (-0.3993–
0.6708)

0.3321 (-0.4641–
1.0889)

- 0.0087 (-0.6516–
0.4396)

-0.1235 (-0.6847–
0.4562)

0.0914 (-0.6131–
0.8496)

Fatty Acid Binding Protein -0.1886 (-0.8014–
0.4985)

0.1871 (-0.4197–
0.9001)

- -0.1360 (-0.6678–
0.5627)

0.1847 (-0.6659–
0.7723)

0.1581 (-0.4542–
0.7569)

I.309 -0.0222 (-0.4888–
0.5877)

0.0819 (-0.5711–
0.9290)

- -0.0442 (-0.6595–
0.7106)

0.0470 (-0.5232–
0.5967)

0.0002 (-0.7757–
0.4838)

Interleukin-18 0.0303 (-0.5095–
0.6723)

-0.2648 (-0.9204–
0.8005)

- -0.0881 (-0.6291–
0.6027)

-0.2408 (-0.7006–
0.4241)

0.0337 (-0.4914–
0.5668)

Monocyte Chemotactic
Protein 1

0.1898 (-0.3829–
0.7083)

0.1413 (-0.3640–
0.5187)

- -0.0488 (-0.5593–
0.4246)

-0.0610 (-0.6482–
0.4144)

0.0730 (-0.3076–
0.5375)

Pancreatic Polypeptide -0.3350 (-0.9495–
0.3015)

-0.3479 (-0.8845–
0.2195)

- -0.0968 (-0.6765–
0.6208)

0.1050 (-0.4080–
1.1152)

0.1147 (-0.5974–
0.8456)

Tenascin C -0.3015 (-0.8557–
0.2412)

-0.5660 (-1.1650–
0.2955)

- -0.0150 (-0.7108–
0.6640)

0.1450 (-0.4580–
0.8990)

0.3060 (-0.5620–
0.7600)

Vascular Cell Adhesion
Molecule 1

-0.2350 (-0.9107–
0.3712)

-0.0670 (-0.7370–
0.5775)

- -0.0670 (-0.6770–
0.6565)

0.1420 (-0.4917–
0.7665)

0.2470 (-0.4373–
1.0150)

doi:10.1371/journal.pone.0142360.t002
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Table 3. Genome-wide significant signals for each endophenotype. P-values, chromosomal and gene location are presented for each signal from the
meta-analyses (Meta) and from the individual (ADNI) and (TARCC) cohorts. P-values are also shown for the association between each endophenotypic sig-
nal and age of onset (AOO) and case-control status (CC).

Trait Trait
Chromosome

SNP(s) P-value
(TARCC)

P-value
(ADNI)

P-value
(Meta)

P-value
(AOO)

P-value
(CC)

SNP
Chromosome

SNP
Genes

ADN 3 chr3:186558403 9.56E-04 8.99E-06 3.16E-08 0.4903 0.4992 3 MAP3K13

chr3:186562865 2.93E-04 2.94E-05 3.75E-08 0.4983 0.5105

rs57056768 7.40E-04 1.97E-05 5.53E-08 0.5121 0.5265

chr3:186552158 1.02E-02 2.85E-05 9.52E-07 0.5367 0.4756

rs8111139 1.79E-05 9.47E-04 2.21E-07 0.0026 0.9600 19 ZNF320

F7 13 rs561241 1.64E-02 7.96E-06 1.09E-08 0.4981 0.3392 13 F7

rs3093233 1.60E-02 2.39E-04 1.78E-08 0.7954 0.2682

rs6039 1.63E-02 2.24E-04 1.87E-08 0.7902 0.2739

rs2480953 1.55E-02 1.97E-04 2.38E-08 0.8831 0.2627

rs9670535 1.57E-02 2.55E-04 2.67E-08 0.8743 0.2589

rs9669828 1.57E-02 2.49E-04 2.71E-08 0.8786 0.2652

rs9670502 1.57E-02 2.60E-04 3.03E-08 0.9689 0.9067

rs1046205 - 4.99E-08 4.99E-08 0.0141 0.5717

rs3093253 5.94E-05 6.67E-05 1.65E-07 0.5414 0.4311

rs569557 6.36E-06 1.46E-05 2.67E-07 0.5899 0.4263

rs2774033 3.71E-04 1.41E-05 2.75E-07 0.5621 0.4167

rs493833 3.96E-04 2.12E-05 4.13E-07 0.1443 0.6015

rs7327099 5.63E-04 1.64E-06 4.77E-07 0.5073 0.5070

rs6042 4.42E-04 1.76E-05 5.89E-07 0.9207 0.6075

rs11839532 - 7.86E-07 7.86E-07 0.4561 0.5065

rs6041 1.90E-02 9.03E-06 9.66E-07 0.0146 0.5644

MCP-
1

17 rs11663180 3.37E-05 1.03E-03 3.88E-07 0.5061 0.3007 18 ATP9B

chr18:76959824 3.49E-05 1.02E-03 3.95E-07 0.5075 0.2990

rs10468812 1.21E-03 1.33E-04 4.87E-07 0.3812 0.4848

chr18:76954975 2.92E-05 1.51E-03 5.62E-07 0.4298 0.2323

rs60585035 2.74E-05 1.76E-03 6.49E-07 0.4572 0.2203

rs8085999 2.70E-04 4.51E-04 6.79E-07 0.3195 0.5519

chr18:76891698 4.05E-05 1.50E-03 6.99E-07 0.2722 0.1835

rs4324200 1.45E-04 7.18E-04 7.23E-07 0.1524 0.6783

rs59890467 3.54E-05 1.69E-03 7.37E-07 0.2713 0.1475

rs4471755 1.01E-03 1.58E-04 7.43E-07 0.4213 0.4191

rs57582689 1.49E-04 7.35E-04 7.54E-07 0.1474 0.6805

rs4799019 2.96E-05 1.92E-03 7.64E-07 0.4017 0.2107

rs1942306 1.88E-04 7.33E-04 7.79E-07 0.1474 0.6806

rs12607019 1.46E-04 7.33E-04 7.79E-07 0.1474 0.6806

rs1942308 1.56E-04 7.35E-04 7.80E-07 0.1475 0.6806

rs56894683 2.96E-05 1.96E-03 7.84E-07 0.3987 0.2088

rs57977665 2.97E-05 1.96E-03 7.87E-07 0.3989 0.2093

chr18:76891893 1.60E-04 7.33E-04 7.94E-07 0.1475 0.6806

rs9967354 1.61E-04 7.33E-04 8.00E-07 0.1475 0.6806

rs9966492 2.89E-05 2.02E-03 8.02E-07 0.3736 0.1910

(Continued)
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endophenotypes analyzed. In these four instances, the association reached GWS in the meta-
analyses and evidence for each of the signals was observed in both the TARCC and ADNI
cohorts (Table 3).

The strongest associations were found for blood concentrations of Factor VII (F7). This sig-
nal contained 12 SNPs on chromosome 13 within the F7 gene that were associated with serum/
plasma concentrations of Factor VII at genome wide significance (Fig 2). Significance within
this region ranged from p = 9.66x10-7 to p = 2.67x10-8. The signal within F7 is a sharp peak
that roughly corresponds to the width of the F7 gene.

Seventeen SNPs on chromosome 18 were significantly associated with serum/plasma levels
of monocyte chemoattractant protein -1 (MCP-1) (Fig 3). These polymorphisms were concen-
trated within the ATP9B gene. Significance within this signal ranged from p = 9.70x10-7 to
p = 3.88x10-7. As with F7, the width of the ATP9B signal corresponds to the length and location
of the ATP9B gene. Associations for many SNPs throughout the entire ATP9B gene region are
elevated, forming a plateaued signal.

One of the many interesting associations that did not have support in both cohorts was
between blood concentrations of MCP-1 and polymorphisms on chromosome 6 within the
triggering receptor expressed on monocytes (TREM1) gene (Fig 3). In this case, the meta-

Table 3. (Continued)

Trait Trait
Chromosome

SNP(s) P-value
(TARCC)

P-value
(ADNI)

P-value
(Meta)

P-value
(AOO)

P-value
(CC)

SNP
Chromosome

SNP
Genes

chr18:76916979 5.83E-05 1.39E-03 8.21E-07 0.3959 0.1730

chr18:76895796 1.96E-04 7.27E-04 9.13E-07 0.1760 0.6762

rs9965326 6.55E-05 1.50E-03 9.70E-07 0.3597 0.1767

rs35548358 7.33E-02 1.05E-06 5.15E-07 0.1802 0.4824 6 TREM1

rs34689624 7.35E-02 1.05E-06 5.17E-07 0.1799 0.4830

rs7761652 1.58E-01 6.05E-07 7.92E-07 0.1499 0.6995

doi:10.1371/journal.pone.0142360.t003

Fig 2. Factor VII results. Panel A; GWASManhattan plot for the meta-analysis of Factor VII. Panel B; QQ
plots for the association results for TARCC (left) and ADNI (right). Panel C; LocusZoom plot for the
chromosome 13 signal observed in the meta-analysis. Panels D and E; LocusZoom plots for the
chromosome 13 signal in TARCC and ADNI, respectively.

doi:10.1371/journal.pone.0142360.g002
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analysis showed an association that reached genome wide significance (Table 3), but the signal
was only apparent within the ADNI cohort (Fig 3).

Four SNPs on chromosome 3 were significantly associated with serum/plasma levels of adi-
ponectin (Table 3). These polymorphisms were concentrated within the MAP3K13 gene. Sig-
nificance within this signal ranged from p = 9.52x10-7 to p = 3.16x10-8. Unlike the signals
within F7 and ATP9B, the width of the MAP3K13 signal for adiponectin is much narrower
than the MAPK13 gene (Fig 4). In addition, although the signal reaches 10−8 for a pair of
SNPs, there are far fewer SNPs in the MAP3K13 signal compared to the signals in F7 and
ATP9B.

Despite the limited samples size in the present study, several previously reported associa-
tions for case control status were replicated at p�0.05 and all published SNPs that were in the
dataset showed a trend for association (Table 4). The most strongly associated SNP
(rs2075650), which reached GWS for association with case control status (Fig 5) is located
within the intron of the translocase of outer mitochondrial membrane 40 (TOMM40) gene
[28]. TOMM40 is in the same region as the APOE gene, but has been reported to contribute
additional genetic risk for AD[28].

Conditional regression analyses recapitulated the GWAS results for F7, MCP-1 and adipo-
nectin (Table 5). In addition, there were significant associations between AD status and blood
concentrations of F7, MCP-1 and adiponectin, which were expected, given the membership of
these proteins in the AD biomarker panel[12]. Finally, conditional regression analyses sug-
gested that the SNPs contributed to variation in protein concentration independent of AD

Fig 3. MCP1 results. Panel A; GWASManhattan plot for meta-analysis of MCP1. Panel B; QQ plots for the
association results for TARCC (left) and ADNI (right). Panel C; LocusZoom plot for the chromosome 18 signal
from the meta-analysis. Panels D and E; LocusZoom plots for the chromosome 18 signal in TARCC and
ADNI, respectively. Panel F; LocusZoom plot for the chromosome 6 signal from the meta-analysis. Panels G
and H; LocusZoom plots for the chromosome 6 signal in TARCC and ADNI, respectively.

doi:10.1371/journal.pone.0142360.g003
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status. It was not possible to determine whether genotypes also contributed directly to disease
risk.

None of the exact SNPs previously reported to be associated with Alzheimer’s disease were
associated with blood concentrations of the proteins investigated in these experiments. How-
ever, signals were observed in the vicinity of CR1 (endoPT: Factor VII), MS4A6A/MS4A4E
(endoPT: B2M), PICALM (endoPT: B2M and VCAM1), CLU (endoPT: Tenascin C), and
PTK2B (endoPT: B2M).

Discussion
The use of quantitative endophenotypes as outcome variables in genome-wide association
studies has proven to be useful for identifying the genetic basis of complex disease[29–34].
This method is likely to be maximally effective for diseases that exhibit significant phenotypic
heterogeneity, such as Alzheimer’s. The use of endophenotypes presumably provides increased
statistical power due to greater proximity of the outcome variable to functional genetic vari-
ants, which reduces the impact of confounding non-genetic factors.

The strongest overall signal in the meta-analysis was between diagnostic status for Alzhei-
mer’s disease and a group of SNPs in the region of the APOE gene. Given the well-replicated
strength of the APOE signal, this result was not surprising even with the small sample size that
was employed in the present study.

Fig 4. Adiponectin results. Panel A; GWASManhattan plot for meta-analysis of Adiponectin. Panel B; QQ
plots for the association results for TARCC (left) and ADNI (right). Panel C; LocusZoom plot for the
chromosome 3 signal from the meta-analysis. Panels D and E; LocusZoom plots for the chromosome 3
signal in TARCC and ADNI, respectively. Panel F; LocusZoom plot for the chromosome 19 signal from the
meta-analysis. Panels G and H; LocusZoom plots for the chromosome 19 signal in TARCC and ADNI,
respectively.

doi:10.1371/journal.pone.0142360.g004
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The strongest signal observed in the meta-analysis was between the serum/plasma concen-
tration of F7 and a group of SNPs within the F7 gene on chromosome 13. Factor VII is a serine
protease that is a key member of the coagulation cascade[35]. Along with tissue factor, F7 is
responsible for initiating the coagulation cascade. The process begins with release of tissue

Fig 5. Case Control results. Panel A; GWASManhattan plot for Case Control status. Panel B; QQ plots for
the association results for TARCC (left) and ADNI (right). Panel C; LocusZoom plot for the chromosome 19
signal from the meta-analysis. Panels D and E; LocusZoom plots for the chromosome 19 signal in TARCC
and ADNI, respectively.

doi:10.1371/journal.pone.0142360.g005

Table 4. Associations between published AD SNPs and diagnostic status.

Gene Marker p-value

NME8 rs2718058 0.02

HKA DRB1-5 rs9271192 0.05

INPP5D rs35349669 0.06

ZCWPW1 rs1476679 0.06

BIN1 rs6733839 0.07

CD2AP rs10948363 0.07

EPHA1 rs11771145 0.08

CASS4 rs7274581 0.08

PTK2B rs28834970 0.09

SORL1 rs11218343 0.09

ABCA7 rs4147929 0.09

CLU rs9331896 0.09

MEF2C rs190982 0.10

CR1 rs6656401 0.12

CLEF1 rs10838725 0.12

FERMT2 rs17125944 0.12

SLC24A4 rs10498633 0.12

PICALM rs10792832 0.13

MS4A6A rs983392 0.13

doi:10.1371/journal.pone.0142360.t004
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factor from the external wall of blood vessels following vascular injury. Once inside the circula-
tion, tissue factor binds to F7, which is converted to F7a, leading to conversion of factors IX
and X into active proteases; factors IXa and Xa[35]. Factor VII is a vitamin K dependent
enzyme and the target of warfarin and other anticoagulants that are used to prevent thrombosis
and thromboembolism[36]. Serum concentrations of F7 were negatively associated with AD
status in prior work[12].

Polymorphisms within the F7 gene have not been suggested previously as contributing to
AD risk, despite multiple large-scale studies. Nevertheless, a SNP within this region (rs6046)
has been associated with variation in risk for cardiovascular disease, venous thrombosis and
stroke[37–41]; conditions that are associated with risk for AD and other forms of dementia.
The rs6046 polymorphism, which is located in exon 9 and is predicted to cause the substitution
of glutamine in place of arginine at amino acid position 353 (R353Q), has been shown to result
in reduced levels of F7 activity[39]. The haplotype containing this SNP has been reported as
both protective and a risk factor for coagulation related disease phenotypes[39–41]. The rs6046
SNP was associated with a later age of AD onset in our study.

Monocyte Chemoattractant Protein -1 (MCP-1) is one of the key chemokines involved in
the regulation of monocyte and macrophage migration during the inflammatory response (see
Deshmane et al. 2009 for review[42]). A variety of cells produce MCP-1, including epithelial,
smooth muscle, astrocytes and microglial cells[42]. Increased MCP-1 has been shown to con-
tribute to a variety of disease states, including Alzheimer’s disease,[43] atherosclerosis[44, 45],
increased risk for AD following traumatic brain injury[46], insulin resistance[47], and

Table 5. Results of conditional regression analyses. For each regression equation, dependent variables are listed in the top row, independent variables
in the second row. For conditional regressions (two columns to the far right) the dependent variables were the residuals from an initial regression and the inde-
pendent variables were the genotypes of candidate SNPs. [Protein~Disease status] indicates that protein concentration was the dependent variable and dis-
ease status was the independent variable in the initial regression. Similarly, [Disease status~ Protein] indicates that disease status was the dependent
variable and protein concentration was the independent variable in the initial regression. Correlation statistics indicating the amount of variance explained by
the independent variable is presented where appropriate for each regression. Results of regression analyses recapitulated the GWAS results for F7, MCP-1
and adiponectin (column one). In addition, there were significant associations between AD status and blood concentrations of F7, MCP-1 and adiponectin
(column two). Conditional regression analyses suggested that candidate SNPs contributed to variation in protein concentration independent of AD status (col-
umn three). None of the results of regressions interrogating whether genotypes contributed directly to disease risk independent of protein endophenotype
were significant (column four). However, due to insufficient statistical power, it was not possible to determine the true relationship between these factors.

Dependent Variable Protein
concentration

Disease status Residuals of Protein
Concentration Regressed

on Disease Status

Residuals of Disease
Status Regressed on
Protein Concentration

Independent Variable Genotype Protein
concentration

Genotype Genotype

Cohort Protein Marker Gene p r2 p r2 p r2 p r2

TARCC Adipo chr3.186558403 MAP3K13 6.31E-10 24% 0.016 NA 0.001 4% 0.574 0%

ADNI Adipo chr3.186558403 MAP3K13 5.09E-05 31% 0.023 NA 0.017 5% 0.244 1%

TARCC Adipo rs8111139 ZNF320 3.91E-10 22% 0.026 NA 3.24E-04 4% 0.208 1%

ADNI Adipo rs8111139 ZNF320 3.58E-04 28% 0.023 NA 0.982 0% 0.653 0%

TARCC F7 rs561241 F7 0.001 13% 0.001 NA 0.011 2% 0.386 0%

ADNI F7 rs561241 F7 0.002 24% 0.069 NA 0.006 6% 0.998 0%

TARCC MCP-1 rs11663180 ATP9B 0.022 9% 0.014 NA 3.03E-05 6% 0.959 0%

ADNI MCP-1 rs11663180 ATP9B 0.010 21% 0.092 NA 0.003 7% 0.390 1%

TARCC MCP-1 rs35548358 TREM1 0.759 3% 0.009 NA 0.054 1% 0.350 0%

ADNI MCP-1 rs35548358 TREM1 0.031 19% 0.092 NA 0.012 5% 0.161 2%

doi:10.1371/journal.pone.0142360.t005
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neuronal death following ischemia[48]. Serum concentrations of MCP-1 were negatively asso-
ciated with AD status in prior work[12].

We observed a significant signal in association with MCP-1 levels located on chromosome
18 in the coding region for ATP9B (ATPase, class II, type 9B). ATP9B is a class 2 P4-ATPase.
Generally speaking, the P4-ATPases orchestrate phospholipid translocation from the exoplas-
mic to cytoplasmic leaflet which is critical for the maintenance of biological membrane charac-
teristics and protein trafficking through vesicular transport. Alterations in the functionality of
this family of flippases have been associated with multiple diseases and disorders (e.g., variants
in ATP8B4 have been associated with Alzheimer’s disease[49, 50]). The ATP9B gene product
has recently been shown to function independent of the CDC50 subunit complex, a character-
istic unique to the class 2 P4-ATPases, and localize specifically to the trans-Golgi network[51].
The implied relationship between MCP-1 levels and the function of ATP9B gene products is
not clear.

The adipocyte-derived hormone adiponectin (also known as 30-kDa adipocyte comple-
ment-related protein; Acrp30) has been mapped to a susceptibility locus for type 2 diabetes
within the AdipoQ gene[52]. AdipoQ is shown to be dysregulated in obesity, metabolic syn-
drome, and cardiovascular disease[53–55]. Adipose tissues secrete many factors into the blood-
stream, such as leptin, TNF-α, adipsin, and adiponectin. These proteins are referred to as
adipocytokines, and are secreted to sensitize the tissues to insulin[52]. Levels of adiponectin in
the blood are lower in individuals with diabetes, insulin resistance, and obesity.[56] Serum con-
centrations of adiponectin were positively associated with AD status in prior work[12].

We observed two significant signals in association with adiponectin levels. The first signal is
located on chromosome 3 within the MAP3K13 gene. The MAP3K13 gene encodes a protein
kinase that is expressed most strongly in the pancreas, brain, and liver, but not detected in
heart, lung, skeletal muscle, or kidney. Protein kinases are involved in a litany of pathways,
however MAP3K13 has been shown to be involved in the stress-activated JNK1 pathway[57].
This gene’s specific involvement with adiponectin expression is unclear.

The second signal associated with adiponectin levels was located on chromosome 19 within
a zinc finger gene, ZNF320. Zinc fingers are a heterogeneous class of protein structural motifs
that are involved in the expression or repression of genes. Specifically, ZNF320 has been shown
to be implicated in glioblastoma. The ZNF320 gene’s involvement with adiponectin expression
is also unclear.

Results of the current study appear to confirm the utility of an endophenotypic approach
to the analysis of GWAS data from complex traits. Four novel associations were observed
between genetic variants and endophenotypes for AD. Polymorphisms within the F7, ATP9B,
MAP3K13 and ZNF320 genes have not been suggested previously as contributing to AD risk,
despite multiple large-scale GWAS studies[1, 58–65]. Interestingly, meta-analysis showed that
two SNPs within the F7 gene (including rs6046) showed a trend for association with age at dis-
ease onset in our sample (Table 3). Unsurprisingly due to the relatively small sample, none of
the SNPs were associated with diagnostic status.

In an attempt to determine the specifics of the most likely biological relationship model for
AD, a series of conditional regressions were performed that assessed the relationships between
diagnostic status and non-genetic factors as well as specific protein biomarkers and their asso-
ciated genotypes. The majority of significant associations recapitulated either current GWAS
relationships between specific SNPs and blood protein concentrations, or relationships inher-
ent to the AD biomarker panel between blood protein concentrations and disease status. In
addition, associated genotypes explained a significant amount of the variation that remained in
protein concentration after disease status and covariates (sex, population substructure
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eigenvectors) were accounted for. It was not possible to determine conclusively whether associ-
ated SNPs also contributed directly to AD risk, independent of protein concentration.

It was interesting that several AD loci that have been reliably reported in the literature were
associated with our AD endophenotypes. If these associations are confirmed in independent
cohorts, they may help to explain the etiological mechanisms and functional variants that are
responsible for these previously published associations.

There a number of caveats to these results. First, although the observations reported were
derived from a meta-analysis of two entirely independent cohorts of study participants, the
sample sizes were small. This is particularly true in light of recent publications by the IGAP
group, which were based upon an international sample of nearly 75,000 individuals. However,
the analytical approach that we adopted provided much greater statistical power than would
have been possible with a traditional GWAS, where diagnostic status is used as the outcome
variable.

In summary, the use of endophenotypes for Alzheimer’s disease in the place of diagnostic
status as the outcome variable in GWAS analysis overcame sample size constraints and allowed
the identification and independent replication of two putative novel genetic loci that appear to
impact risk for AD. Polymorphisms in F7 and ATP9B may impact the risk or development of
AD and should be studied in a larger, independent cohort.
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